

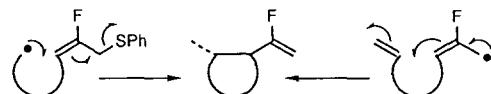
Preliminary Note

Radical cyclisations of 2-fluoroallyl derivatives for synthesising fluorovinyl-substituted carbocycles

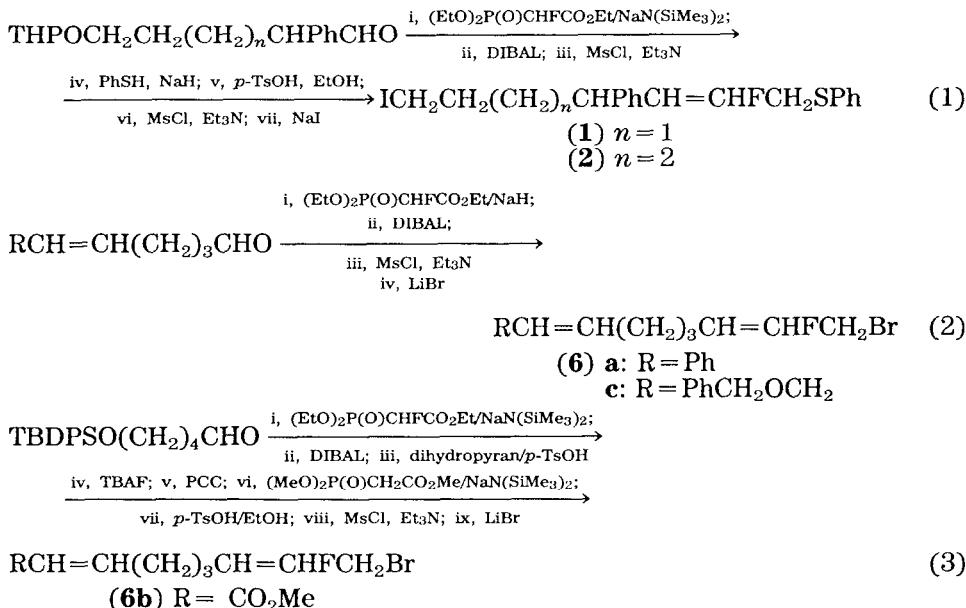
Tsutomu Morikawa, Jun Uchida, Katsuhiko Imoto and Takeo Taguchi*

Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03 (Japan)

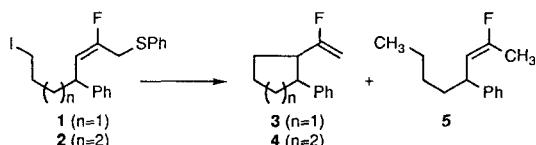
(Received November 25, 1991; accepted February 24, 1992)


Abstract

Radical cyclisations of derivatives of 2-fluoroallyl sulphide and 2-fluoroallyl bromide provide fluorovinyl-substituted carbocycles. 2-Fluoroallyl components ($-C=CF-C-$) act as radical acceptors or initial radical sites in cyclisation reactions.

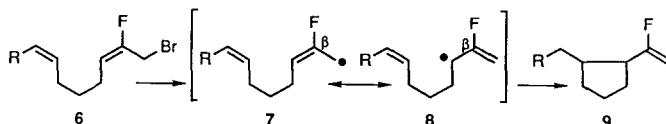

Radical cyclisation reactions have become recognized as useful tools in synthetic chemistry [1]. Free radical-promoted allylic rearrangement is involved in cyclisation processes via an S_H' mechanism [2] or intermediary allylic radicals [3], and contributes efficiently towards the retention of the double-bond functionality in the cyclised products.

During the study of the radical cyclisation reactions of fluorine-substituted compounds [4], examination has also been made of the reactions of cyclisation systems containing the 2-fluoroallyl component ($-C=CF-C-$). Since fluorine substitution generally permits the use of the tin hydride method in the radical reaction, allylic rearrangement of the fluoroallyl component should lead to the formation of a new fluorovinyl group in the cyclised product (see Scheme 1). This paper describes radical cyclisation reactions achieved via the allylic rearrangement of 2-fluoroallyl sulphide and 2-fluoroallyl bromide producing fluorovinyl-substituted carbocycles.


Substrates **1**, **2** and **6** were readily prepared by the Emmons reaction with triethyl α -fluorophosphonoacetate [5] followed by conventional transformation of the functional group [see eqns. (1)-(3)].

Scheme 1.

When fluoroallylic sulphide (**1**) was reacted with a 0.04 mol dm⁻³ solution of tributyltin hydride (Bu₃SnH, 2 equiv.) in benzene and a catalytic amount (0.2 equiv.) of azobisisobutyronitrile (AIBN) at reflux temperature for 3 h, fluorovinyl-substituted cyclopentane (**3**) was obtained in 64% yield as the only isolable product. The radical cyclisation of **1** proceeded in the selective 5-*exo* mode followed by allylic rearrangement to eject the phenylthio radical (PhS[•]) via the S_H' mechanism. However, under the same conditions (0.04 mol dm⁻³), **2** gave a cyclohexane derivative **4** in low yield (16%) along with a reduction product (**5**, 13% yield). In the 6-*exo* cyclisation of **2**, the high dilution method was employed in order to increase the extent of cyclisation. In 0.004 mol dm⁻³ solution, **4** was obtained in 43% yield with the formation of **5** being less than 4%. Slow addition using a syringe pump (0.004 mol dm⁻³ final concentration) resulted in a 54% yield of **4**. Thus, slow 6-*exo* cyclisation to the fluoroallyl sulphide (compared to 5-*exo* cyclisation) occurs predominantly by lowering the concentration of tin hydride, and under such conditions, intermolecular side-reactions may be minimized to a large extent (see Scheme 2 and Table 1).



Scheme 2. Reagents and conditions: **1** or **2** (1 equiv.), Bu₃SnH (2 equiv.), AIBN (0.2 equiv.), benzene, reflux, 3 h.

TABLE 1

Radical cyclisation of **1** and **2**

Substrate ^a	[Bu ₃ SnH] (mol dm ⁻³)	Product(s) (yield, %)
1	0.04	3 (64) ^b
2	0.04	4 (16) ^b , 5 (13) ^c
2	0.004	4 (43) ^b , 5 (<4) ^c
2	0.004 (slow add.)	4 (54) ^b , 5 (<13) ^c

^aMixtures of stereoisomers were used as substrates.^bOnly one isomer was observed. The stereochemistry of **3** was not determined. Compound **4** was a *trans* isomer.^cOther by-products were not characterized.Scheme 3. Reagents and conditions: **6** (1 equiv.), Bu₃SnH (1.1 equiv.), AIBN (0.1 equiv.), benzene, reflux, 3 h.

Fluorovinyl-substituted cyclopentanes could be also synthesized by reverse-mode radical cyclisation through the allylic radical generated from the fluoroallyl bromide **6**. The tin hydride-promoted reaction of **6a** proceeded smoothly via the 5-*exo* mode cyclisation of the allylic radical **8a** to give **9a** in 74% yield. Similarly, **9b** was obtained by the allylic radical cyclisation of **6b** in 64% yield. The substituent on the acceptor double bond affects the cyclisation yield of the allylic radical. In the case of **6c**, the cyclisation yield was reduced to 48% and reduction products without cyclisation were observed in 32% yield*. However, the high dilution method improved the yield of **9c** to 68%. Intermediary allylic radicals (**7** and **8**) bearing a fluorine-substituent at the β -position may possibly be synthetically important in that the corresponding carbanion ($-C=CF-C^-$) may involve the problem of β -elimination of the fluoride anion to afford the allene derivative (see Scheme 3 and Table 2).

In summary, two types of radical cyclisations involving 2-fluoroallyl component as the acceptor and the initial radical site have been developed for the synthesis of fluorovinyl-substituted carbocycles.

Spectral data

1 (stereoisomeric mixture, *E*:*Z* = 4.1:1.0 determined by ¹H NMR spectroscopy): ¹H NMR CDCl₃ δ : 1.44–1.76 (4H, m, CH₂); 2.99–3.12 (3H, m,

*The reduction products were PhCH₂OCH₂CH=CH(CH₂)₃CH=CFCH₃ and PhCH₂OCH₂CH=CH(CH₂)₄CF=CH₂ (22% and 10% yields, respectively).

TABLE 2
Allylic radical cyclisation of **6**

Substrate ^a	[Bu ₃ SnH] (mol dm ⁻³)	Product ^b (yield, %)
6a (R=Ph)	0.01	9a (74)
6b (R=CO ₂ Me)	0.02	9b (64)
6c (R=PhCH ₂ OCH ₂)	0.01	9c (48)
6c (R=PhCH ₂ OCH ₂)	0.0025 (slow add.)	9c (68)

^aMixtures of stereoisomers were used as substrates.

^bRatio of stereoisomers; **9a** (1.6:1), **9b** (1.4:1), **9c** [2:1 (0.01 mol dm⁻³), 3.4:1 (0.0025 mol dm⁻³)].

CHPh and CH₂I); 3.46–3.71 (2H, m, CH₂SPh for *Z*-isomer, overlapping); 3.58 (1H, dd, *J*=18.5, 14.3 Hz, CHSPh for *E*-isomer); 3.71 (1H, dd, *J*=24.1, 14.3 Hz, CHSPh for *E*-isomer); 4.70 [1H, dd, *J*=34.8, 10.0 Hz, CH_(trans)=CF (*trans* relationship between H and F) for *Z*-isomer]; 5.34 [1H, dd, *J*=19.9, 10.5 Hz, CH_(cis)=CF for *E*-isomer]; 7.03–7.48 (10H, m, Ar) ppm. ¹⁹F NMR CDCl₃ δ (from benzotrifluoride): –42.10 (br for *E*-isomer); –49.38 (m, for *Z*-isomer) ppm. IR (neat): 3060; 3026; 2928; 2855; 1692 cm⁻¹ MS *m/z*: 426 (M⁺); 316; 147.

2 (stereoisomeric mixture, *E*:*Z*=7.2:1.0 determined by ¹H NMR spectroscopy): ¹H NMR CDCl₃ δ: 1.10; 1.10–1.81 (6H, m, CH₂); 3.0–3.15 (3H, m, CHPh and CH₂I); 3.52–3.69 (2H, m, CH₂SPh for *Z*-isomer, overlapping); 3.59 (1H, dd, *J*=18.7, 14.3 Hz, CHSPh for *E*-isomer); 3.72 (1H, dd, *J*=23.8, 14.3 Hz, CHSPh for *E*-isomer); 4.73 [1H, dd, *J*=35.0, 10.5 Hz, CH_(trans)=CF for *Z*-isomer]; 5.34 [1H, dd, *J*=20.1, 10.5 Hz, CH_(cis)=CF for *E*-isomer]; 7.02–7.47 (10H, m, Ar) ppm. ¹⁹F NMR CDCl₃ δ: –42.07 (m, for *E*-isomer); –48.86 (m, for *Z*-isomer) ppm. IR (neat): 3059; 3027; 2934; 2857; 1692 cm⁻¹. High-resolution MS: C₂₀H₂₂FIS, 440.0446. Calcd. 440.0470.

3: ¹H NMR CDCl₃ δ: 1.74–1.94 (4H, m, CH₂); 2.01–2.21 (2H, m, CH₂); 2.70 (1H, dddd, *J*=22.2, 9.8, 8.5, 8.5 Hz, CHCF=C); 3.07 (1H, dt, *J*=9.8, 8.5 Hz, CHPh); 4.10 [1H, dd, *J*=50.5, 2.7 Hz, CF=CH_(trans)]; 4.42 [1H, dd, *J*=17.6, 2.7 Hz, CF=CH_(cis)]; 7.18–7.32 (5H, m, Ar) ppm. ¹⁹F NMR CDCl₃ δ: –41.70 (ddd, *J*=50.5, 22.2, 17.6 Hz) ppm. IR (neat): 3063; 3029; 2960; 2874; 1670 cm⁻¹. High-resolution MS: C₁₃H₁₅F, 190.1135. Calcd., 190.1156.

4: ¹H NMR CDCl₃ δ: 1.35–1.66 (4H, m, CH₂); 1.80–2.02 (4H, m, CH₂); 2.35 (1H, dddd, *J*=24.7, 11.6, 11.6, 3.4 Hz, CHCF=C); 2.62 (1H, ddd, *J*=11.6, 11.6, 3.4 Hz, CHPh); 3.91 [1H, dd, *J*=50.8, 2.7 Hz, CF=CH_(trans)]; 4.22 [1H, dd, *J*=18.1, 2.7 Hz, CF=CH_(cis)]; 7.16–7.29 (5H, m, Ar) ppm. ¹⁹F NMR CDCl₃ δ: –41.32 (ddd, *J*=50.8, 24.7, 18.1 Hz) ppm. IR (neat): 3029; 2932; 2857; 1670 cm⁻¹. High-resolution MS: C₁₄H₁₇F, 204.1320. Calcd., 204.1313.

5 (*E*-isomer, 8%): ¹H NMR CDCl₃ δ : 0.88 (3H, t, *J*=7.1 Hz, CH₃); 1.14–1.37 (4H, m, CH₂); 1.56–1.77 (2H, m, CH₂), 1.91 (3H, dd, *J*=17.6, 0.6 Hz, C=CFCH₃); 3.21 (1H, m, CHPh); 5.21 [1H, ddd, *J*=21.7, 10.3, 0.6 Hz, CH_(cis)=CF]; 7.17–7.31 (5H, m, Ar) ppm. ¹⁹F NMR CDCl₃ δ : -32.75 (m) ppm. IR (neat): 3028; 2958; 2930; 1704 cm⁻¹. High-resolution MS: C₁₄H₁₉F, 206.1445. Calcd., 206.1469.

5 (*Z*-isomer, 5%): ¹H NMR CDCl₃ δ : 0.88 (3H, t, *J*=7.1 Hz, CH₃); 1.12–1.37 (4H, m, CH₂); 1.57–1.73 (2H, m, CH₂); 1.88 (3H, dd, *J*=16.6, 0.8 Hz, C=CFCH₃); 3.70 (1H, m, CHPh); 4.65 [1H, ddd, *J*=36.4, 9.9, 0.8 Hz, CH_(trans)=CF]; 7.16–7.30 (5H, m, Ar) ppm. ¹⁹F NMR CDCl₃ δ : -39.79 (m) ppm.

6a (mixture of two stereoisomers with respect to phenyl-substituted double bond, *E*:*Z*=1.2:1.0 determined by ¹H NMR spectroscopy): ¹H NMR CDCl₃ δ : 1.48–1.68 (2H, m, CH₂); 2.08–2.38 (4H, m, CH₂); 3.89 (2H, d, *J*=19.5 Hz, CH₂Br for one isomer); 3.94 (2H, d, *J*=19.5 Hz, CH₂Br for another isomer); 4.94 [1H, dt, *J*=34.3, 7.6 Hz, CH_(trans)=CF for one isomer]; 5.00 [1H, dt, *J*=34.3, 7.6 Hz, CH_(trans)=CF for another isomer]; 5.64 [1H, dt, *J*=11.7, 7.3 Hz, CH_(cis)=CHPh]; 6.19 [1H, dt, *J*=15.8, 6.9 Hz, CH_(trans)=CHPh]; 6.38–6.46 (1H, m, C=CHPh); 7.17–7.35 (5H, m, Ar) ppm. ¹⁹F NMR CDCl₃ δ : -51.73–-51.97 (m) ppm. IR (neat): 3028; 2929; 2855; 1696 cm⁻¹.

6b (mixture of three stereoisomers, 19.0:1.7:1.0 determined by ¹⁹F NMR spectroscopy): ¹H NMR CDCl₃ δ : 1.53–1.63 (2H, m, CH₂); 1.98–2.08 (2H, m, CH₂); 2.11–2.27 (2H, m, CH₂); 3.73 (3H, s, CH₃); 3.93 (2H, d, *J*=19.7 Hz, CH₂Br for second component of minor isomers); 3.98 (2H, d, *J*=22.0 Hz, CH₂Br for major isomer); 4.11 (2H, d, *J*=21.4 Hz, CH₂Br for first component of minor isomers); 4.96 [1H, dt, *J*=34.0, 7.6 Hz, CH_(trans)=CF for second component of minor isomers]; 5.24 [1H, dt, *J*=19.0, 8.2 Hz, CH_(cis)=CF for major isomer]; 5.26 [1H, dt, *J*=18.8, 8.2 Hz, CH_(cis)=CF for first component of minor isomers]; 5.83 (1H, dt, *J*=15.6, 1.5 Hz, C=CHCO₂Me for first component of minor isomers); 5.85 [1H, dt, *J*=15.6, 1.5 Hz, C=CHCO₂Me for major isomer and second component of minor isomers (overlapping)]; 6.94 [1H, dt, *J*=15.6, 7.0 Hz, CH=CHCO₂Me for major isomer and minor isomers (overlapping)] ppm. ¹⁹F NMR CDCl₃ δ : -44.48 (td, *J*=22.0, 19.0 Hz, for major isomers); -46.32 (td, *J*=21.4, 18.8 Hz, for first component of minor isomers); -49.64 (dt, *J*=34.0, 19.7 Hz, for second component of minor isomers) ppm. IR (neat): 2950; 2863; 1726; 1659 cm⁻¹. High-resolution MS: C₁₀H₁₄BrFO₂, 264.0154, 266.0159. Calcd., 264.0161, 266.0141.

6c (mixture of four stereoisomers, *E*:*Z*=1.0:2.1 with respect to fluorine-substituted double bond): ¹H NMR CDCl₃ δ : 1.43–1.55 (2H, m, CH₂); 1.98–2.16 (4H, m, CH₂); 3.89–4.08 (4H, m, CH₂); 4.50–4.52 (2H, m, CH₂); 4.94 [1H, dd, *J*=34.3, 7.6 Hz, CH_(trans)=CF for one isomer]; 4.97 [1H, *J*=34.3, 7.6 Hz, CH_(trans)=CF for one isomer]; 5.24 [1H, dd, *J*=18.9, 8.2 Hz, CH_(cis)=CF for one isomer]; 5.26 [1H, dd, *J*=18.9, 8.2 Hz, CH_(cis)=CF for one stereoisomer]; 5.56–5.74 (2H, m, CH=CH); 7.26–7.36 (5H, m, Ar) ppm. ¹⁹F

NMR CDCl_3 δ : -45.04 – -45.29 (m for *E*-fluoro-olefin isomers); -51.70 – -52.0 (m for *Z*-fluoro-olefin isomers) ppm. IR (neat): 3063; 3030; 2930; 2857; 1694 cm^{-1} . MS m/z : 247 ($\text{M}^+ - \text{Br}$); 205; 183; 151.

9a (stereoisomeric mixture, 1.6:1.0 determined by GLC): ^1H NMR CDCl_3 δ : 1.24–1.98 (7H, m, CH_2 and CH); 2.12–2.45 (2H, m, CH_2); 2.73–2.96 (1H, m, $\text{CHCF}=\text{C}$); 4.23 [1H, dd, $J=50.4$, 2.7 Hz, $\text{CF}=\text{CH}_{(\text{trans})}$ for major isomer]; 4.26 [1H, dd, $J=50.6$, 2.7 Hz, $\text{CF}=\text{CH}_{(\text{trans})}$ for minor isomer]; 4.50 [1H, dd, $J=17.7$, 2.7 Hz, $\text{CF}=\text{CH}_{(\text{cis})}$ for major isomer]; 4.59 [1H, dd, $J=18.3$, 2.7 Hz, $\text{CF}=\text{CH}_{(\text{cis})}$ for minor isomer]; 7.16–7.28 (5H, m, Ar) ppm. ^{19}F NMR CDCl_3 δ : -31.94 (ddd, $J=50.6$, 21.3, 18.3 Hz, for minor isomer); -40.43 (ddd, $J=50.4$, 22.8, 17.7 Hz, for major isomer) ppm. IR (neat): 3064; 3028; 2959; 2874; 1667 cm^{-1} . High-resolution MS: $\text{C}_{14}\text{H}_{17}\text{F}$, 204.1323. Calcd., 204.1314.

9b (stereoisomeric mixture, 1.4:1.0 determined by GLC); ^1H NMR CDCl_3 δ : 1.24–2.04 (7H, m, CH_2 and CH); 2.18–2.57 (3H, m, CH_2 and $\text{CHCF}=\text{C}$ for minor isomer); 2.82 (1H, dddd, $J=24.4$, 6.8, 6.8, 6.8 Hz, $\text{CHCF}=\text{C}$ for major isomer); 3.66 (3H, s, CH_3); 4.22 [1H, dd, $J=50.4$, 2.7 Hz, $\text{CF}=\text{CH}_{(\text{trans})}$ for major isomer]; 4.23 [1H, dd, $J=50.2$, 2.7 Hz, $\text{CF}=\text{CH}_{(\text{trans})}$ for minor isomer]; 4.50 [1H, dd, $J=18.0$, 2.7 Hz, $\text{CF}=\text{CH}_{(\text{cis})}$ for minor isomer]; 4.53 [1H, dd, $J=18.1$, 2.7 Hz, $\text{CF}=\text{CH}_{(\text{cis})}$ for major isomer] ppm. ^{19}F NMR CDCl_3 δ : -33.31 (ddd, $J=50.4$, 24.4, 18.1 Hz, for major isomer); -40.93 (ddd, $J=50.2$, 21.7, 18.0 Hz, for minor isomer) ppm. IR (neat): 2955; 2876; 1741; 1670 cm^{-1} . High-resolution MS: $\text{C}_{10}\text{H}_{15}\text{FO}_2$, 186.1070. Calcd., 186.1056.

9c (stereoisomeric mixture, 2.1–3.4:1 determined by GLC): ^1H NMR CDCl_3 δ : 1.19–1.43 (1H, m, CH); 1.47–2.18 (8H, m, CH_2); 2.21 (1H, dddd, $J=23.1$, 8.4, 8.4, 8.4 Hz, $\text{CHCF}=\text{C}$ for major isomer); 2.70 (1H, dddd, $J=24.3$, 7.4, 7.4, 7.4 Hz, $\text{CHCF}=\text{C}$ for minor isomer); 3.47–3.57 (2H, m, CH_2O); 4.19 [1H, dd, $J=50.5$, 2.7 Hz, $\text{CF}=\text{CH}_{(\text{trans})}$ for minor isomer]; 4.25 [1H, dd, $J=50.5$, 2.7 Hz, $\text{CF}=\text{CH}_{(\text{trans})}$ for major isomer]; 4.46–4.54 (3H, m, CH_2Ph and $\text{CF}=\text{CH}_{(\text{cis})}$); 7.26–7.38 (5H, m, Ar) ppm. ^{19}F NMR CDCl_3 δ : -32.32 (ddd, $J=50.5$, 24.3, 19.5 Hz); -40.2 – -40.46 (m) ppm. IR (neat): 3065; 3031; 2953; 2870; 1667 cm^{-1} . MS m/z : 248 (M^+); 228; 220; 205; 157; 140.

References

- 1 D. J. Hart, *Science*, 223 (1984) 883; B. Giese, *Angew. Chem., Int. Ed. Engl.*, 24 (1985) 553; B. Giese, *Radicals in Organic Synthesis: Formation of Carbon–Carbon Bonds*, Pergamon Press, Oxford, 1986; M. Ramaiah, *Tetrahedron*, 43 (1987) 3541; D. P. Curran, *Synthesis*, (1988) 417, 489.
- 2 T. Migita, M. Kosugi, K. Takayama and Y. Nakagawa, *Tetrahedron*, 29 (1973) 51; Y. Ueno, K. Chino and M. Okawara, *Tetrahedron Lett.*, 23 (1982) 2575; K. S. Feldman, A. L. Romanelli, R. E. Ruckle Jr. and R. F. Miller, *J. Am. Chem. Soc.*, 110 (1988) 3300.
- 3 G. Stork and M. E. Reynolds, *J. Am. Chem. Soc.*, 110 (1988) 6911.

- 4 T. Morikawa, T. Nishiwaki, Y. Iitaka and Y. Kobayashi, *Tetrahedron Lett.*, 28 (1987) 671; T. Morikawa, M. Uejima and Y. Kobayashi, *Chem. Lett.*, (1989) 623; T. Morikawa, T. Nishiwaki and Y. Kobayashi, *Tetrahedron Lett.*, 30 (1989) 2407.
- 5 H. Machleidt and R. Wessendorf, *Liebigs Ann. Chem.*, 674 (1964) 1; A. Thenappan and D. J. Burton, *J. Org. Chem.*, 55 (1990) 4639.